Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Biomed Mater Devices ; 2(1): 444-453, 2024.
Article in English | MEDLINE | ID: mdl-38425458

ABSTRACT

Protein-based biologics constitute a rapidly expanding category of therapeutic agents with high target specificity. Their clinical use has dramatically increased in recent years, but administration is largely via injection. Drug delivery across the oral mucosa is a promising alternative to injections, in order to avoid the gastrointestinal tract and first-pass metabolism. Current drug delivery formulations include liquid sprays, mucoadhesive tablets and films, which lack dose control in the presence of salivary flow. To address this, electrospun membranes that adhere tightly to the oral mucosa and release drugs locally have been developed. Here, we investigated the suitability of these mucoadhesive membranes for peptide or protein release. Bradykinin (0.1%) or insulin (1, 3, and 5%) were incorporated by electrospinning from ethanol/water mixtures. Immersion of membranes in buffer resulted in the rapid release of bradykinin, with a maximal release of 70 ± 12% reached after 1 h. In contrast, insulin was liberated more slowly, with 88 ± 11, 69.0 ± 5.4, and 63.9 ± 9.0% cumulative release of the total encapsulated dose after 8 h for membranes containing 1, 3, and 5% w/w insulin, respectively. Membrane-eluted bradykinin retained pharmacological activity by inducing rapid intracellular calcium release upon binding to its cell surface receptor on oral fibroblasts, when examined by flow cytometry. To quantify further, time-lapse confocal microscopy revealed that membrane-eluted bradykinin caused a 1.58 ± 0.16 fold-change in intracellular calcium fluorescence after 10 s compared to bradykinin solution (2.13 ± 0.21), relative to placebo. In conclusion, these data show that electrospun membranes may be highly effective vehicles for site-specific administration of biotherapeutic proteins or peptides directly to the oral mucosa for either local or systemic drug delivery applications.

2.
Biomater Adv ; 159: 213800, 2024 May.
Article in English | MEDLINE | ID: mdl-38377947

ABSTRACT

Currently, in vitro testing examines the cytotoxicity of biomaterials but fails to consider how materials respond to mechanical forces and the immune response to them; both are crucial for successful long-term implantation. A notable example of this failure is polypropylene mid-urethral mesh used in the treatment of stress urinary incontinence (SUI). The mesh was largely successful in abdominal hernia repair but produced significant complications when repurposed to treat SUI. Developing more physiologically relevant in vitro test models would allow more physiologically relevant data to be collected about how biomaterials will interact with the body. This study investigates the effects of mechanochemical distress (a combination of oxidation and mechanical distention) on polypropylene mesh surfaces and the effect this has on macrophage gene expression. Surface topology of the mesh was characterised using SEM and AFM; ATR-FTIR, EDX and Raman spectroscopy was applied to detect surface oxidation and structural molecular alterations. Uniaxial mechanical testing was performed to reveal any bulk mechanical changes. RT-qPCR of selected pro-fibrotic and pro-inflammatory genes was carried out on macrophages cultured on control and mechanochemically distressed PP mesh. Following exposure to mechanochemical distress the mesh surface was observed to crack and craze and helical defects were detected in the polymer backbone. Surface oxidation of the mesh was seen after macrophage attachment for 7 days. These changes in mesh surface triggered modified gene expression in macrophages. Pro-fibrotic and pro-inflammatory genes were upregulated after macrophages were cultured on mechanochemically distressed mesh, whereas the same genes were down-regulated in macrophages exposed to control mesh. This study highlights the relationship between macrophages and polypropylene surgical mesh, thus offering more insight into the fate of an implanted material than existing in vitro testing.


Subject(s)
Surgical Mesh , Urinary Incontinence, Stress , Humans , Materials Testing , Surgical Mesh/adverse effects , Polypropylenes/chemistry , Biocompatible Materials , Macrophages , Urinary Incontinence, Stress/surgery
3.
Biomater Adv ; 157: 213734, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38109830

ABSTRACT

Fibrous mucoadhesive polymer membranes prepared using electrospinning demonstrate many advantages for mucosal drug delivery compared to other formulations. Previous electrospun membrane formulations have been developed mainly for the delivery of small molecule drugs. There remains great potential to further develop the technology for the delivery of vesicular vectors that allow administration of advanced therapeutic agents. However, there are no previous reports demonstrating the release of intact drug delivery vesicles from electrospun materials. Here, we describe incorporation and release of protein-loaded polymersomes from polyethylene oxide (PEO)-based electrospun membranes. Polymersomes comprising a copolymer of glycerol monomethacrylate (GMA) and hydroxypropyl methacrylate (HPMA) were prepared using polymerization-induced self-assembly and incorporated within PEO membranes using bead-on-string electrospinning at approximately 40 % w/w by polymer mass. Super-resolution fluorescence imaging showed that the vesicles remained intact and retained their encapsulated protein load within the fibre beads. Transmission electron microscopy and dynamic light scattering demonstrated that polymersomes retained their morphology following release from the polymer fibres. F(ab) antibody fragments were encapsulated within polymersomes and then electrospun into membranes. 78 ± 13 % of the F(ab) remained encapsulated within polymersomes during electrospinning and retained functionality when released from electrospun membranes, demonstrating that the formulation is suitable for the delivery of biologics. Membranes were non-irritant to the oral epithelium and fluorescence microscopy detected accumulation of polymersomes within the epithelia following application. This innovative drug delivery approach represents a novel and potentially highly useful method for the administration of large molecular mass therapeutic molecules to diseased mucosal sites.


Subject(s)
Biological Products , Polyethylene Glycols , Polymers , Drug Delivery Systems , Epithelium
4.
Exp Dermatol ; 32(2): 220-225, 2023 02.
Article in English | MEDLINE | ID: mdl-36457227

ABSTRACT

Skin irritancy to topically applied chemicals is a significant problem that affects millions of people worldwide. New or modified chemical entities must be tested for potential skin irritancy by industry as part of the safety and toxicity profiling process. Many of these tests have now moved to a non-animal-based format to reduce experiments on animals. However, these tests for irritancy potential often rely on monolayer cultures of keratinocytes that are not representative of the skin architecture or tissue-engineered human skin equivalents (HSE) using complex multi-gene expression panels that are often cumbersome and not amenable for high throughput. Here, we show that human skin equivalents increase abundance of several phosphorylated kinases (c-Src, c-Jun, p53, GSK3α/ß) in response to irritant chemical stimulation by phosphokinase array analysis. Specific phosphorylation of c-SrcY419 was confirmed by immunoblotting and was plasma membrane-associated in basal/spinous cells by phospho-specific immunohistochemistry. Moreover, c-SrcY419 phosphorylation in response to the irritants lactic acid and capsaicin was inhibited by the c-Src inhibitors KB-SRC and betaine trimethylglycine. These data provide the first evidence for c-Src specific activation in response to chemical irritants and point to the development of new modes of rapid testing by immunodetection for first-pass screening of potential irritants.


Subject(s)
Irritants , Skin Diseases , Animals , Humans , Irritants/pharmacology , Skin/metabolism , Skin Diseases/metabolism , Keratinocytes/metabolism , Allergens
5.
Oral Dis ; 29(4): 1400-1415, 2023 May.
Article in English | MEDLINE | ID: mdl-35092132

ABSTRACT

Oral lichen planus (OLP) is a T cell-mediated inflammatory disease of the oral mucosa that has been extensively researched over many years but as yet the mechanisms of pathogenesis are still not fully understood. Whilst the specific aetiological factors driving OLP remain ambiguous, evidence points to the development of a chronic, dysregulated immune response to OLP-mediating antigens presented by innate immune cells and oral keratinocytes leading to increased cytokine, chemokine and adhesion molecule expression. These molecules recruit T cells and mast cells to the diseased site and orchestrate a complex interplay between cells that culminates in keratinocyte cell death, mucosal basement membrane destruction and long-term chronicity of the disease. The main lymphocytes involved are thought to be CD8+ cytotoxic and CD4+ Th1 polarised T cells although recent evidence indicates the involvement of other Th subsets such as Th9, Th17 and Tregs, suggesting that a more complex immune cell relationship exists during the disease process. This review provides an overview of the immune mechanisms at play in OLP pathogenesis with particular emphasis on the role of the different Th subsets and how these recent discoveries may guide research towards identifying potential therapeutic targets.


Subject(s)
Lichen Planus, Oral , Humans , Lichen Planus, Oral/pathology , CD4-Positive T-Lymphocytes , Cytokines , Th17 Cells/metabolism , Keratinocytes
6.
J Control Release ; 350: 146-157, 2022 10.
Article in English | MEDLINE | ID: mdl-35973471

ABSTRACT

Chronic ulcerative oral mucosal inflammatory diseases, including oral lichen planus and recurrent aphthous stomatitis, are painful and highly prevalent, yet lack effective clinical management. In recent years, systemic biologic therapies, including monoclonal antibodies that block the activity of cytokines, have been increasingly used to treat a range of immune-mediated inflammatory conditions such as rheumatoid arthritis and psoriasis. The ability to deliver similar therapeutic agents locally to the oral epithelium could radically alter treatment options for oral mucosal inflammatory diseases, where pro-inflammatory cytokines, in particular tumour-necrosis factor-α (TNFα), are major drivers of pathogenesis. To address this, an electrospun dual-layer mucoadhesive patch comprising medical-grade polymers was investigated for the delivery of F(ab) biologics to the oral mucosa. A fluorescent-labelled F(ab) was incorporated into mucoadhesive membranes using electrospinning with 97% v/v ethanol as a solvent. The F(ab) was detected within the fibres in aggregates when visualised by confocal microscopy. Biotinylated F(ab) was rapidly eluted from the patch (97 ± 5% released within 3 h) without loss of antigen-binding activity. Patches applied to oral epithelium models successfully delivered the F(ab), with fluorescent F(ab) observed within the tissue and 5.1 ± 1.5% cumulative transepithelial permeation reached after 9 h. Neutralising anti-TNFα F(ab) fragments were generated from whole IgG by papain cleavage, as confirmed by SDS-PAGE, then incorporated into patches. F(ab)-containing patches had TNFα neutralising activity, as shown by the suppression of TNFα-mediated CXCL8 release from oral keratinocytes cultured as monolayers. Patches were applied to lipopolysaccharide-stimulated immune-competent oral mucosal ulcer equivalents that contained primary macrophages. Anti-TNFα patch treatment led to reduced levels of active TNFα along with a reduction in the levels of disease-implicated T-cell chemokines (CCL3, CCL5, and CXCL10) to baseline concentrations. This is the first report of an effective device for the delivery of antibody-based biologics to the oral mucosa, enabling the future development of new therapeutic strategies to treat painful conditions.


Subject(s)
Mucositis , Humans , Immunoglobulin Fab Fragments/administration & dosage , Immunoglobulin Fab Fragments/immunology , Mucositis/drug therapy , Tumor Necrosis Factor-alpha/administration & dosage , Tumor Necrosis Factor-alpha/immunology
7.
Sensors (Basel) ; 22(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35957472

ABSTRACT

A multiscale modelling approach has been applied to the simulation of the electrical properties of oral tissue, for the purpose of informing an electrical impedance-based method of oral potential malignant disorder (OPMD) diagnosis. Finite element models of individual cell types, with geometry informed by histological analysis of human oral tissue (normal, hyperplastic and dysplastic), were generated and simulated to obtain electrical parameters. These were then used in a histology-informed tissue scale model, including the electrode geometry of the ZedScan tetrapolar impedance-measurement device. The simulations offer insight into the feasibility of distinguishing moderate dysplasia from severe dysplasia or healthy tissue. For some oral sites, simulated spectra agreed with real measurements previously collected using ZedScan. However, similarities between simulated spectra for dysplastic, keratinised and non-dysplastic but hyperkeratinised tissue suggest that significant keratinisation could cause some OPMD tissues to exhibit larger than expected impedance values. This could lead to misidentification of OPMD spectra as healthy. Sources of uncertainty within the models were identified and potential remedies proposed.


Subject(s)
Dielectric Spectroscopy , Mouth Neoplasms , Computer Simulation , Electric Impedance , Electrodes , Humans , Mouth Neoplasms/diagnosis
8.
J Periodontol ; 93(9): 1421-1433, 2022 09.
Article in English | MEDLINE | ID: mdl-35644006

ABSTRACT

BACKGROUND: Numerous lines of evidence link periodontal pathobionts and their virulence factors with endothelial damage. Most research has been conducted using single species infections at the exclusion of other periodontal microorganisms that have been identified in vascular tissue. Here, we assessed endothelial infection with either single or mixed periodontal species infection and examined their effect on endothelial damage and permeability. METHODS: Cell surface abundance of platelet endothelial cell adhesion molecule-1 (PECAM-1) or endothelial permeability following infection with Porphyromonas gingivalis, Fusobacterium nucleatum subspecies (ssp) nucleatum, ssp polymorphum or Tannerella forsythia as single or mixed species infection was determined by flow cytometry and a fluorescent dextran permeability assay. Zebrafish embryos were infected systemically with either single or mixed species with mortality and disease measured over time. RESULTS: F. nucleatum ssp nucleatum, ssp polymorphum and P. gingivalis significantly reduced PECAM-1 abundance in single species infection, whereas T. forsythia had no effect. F. nucleatum ssp polymorphum caused considerable mortality and morbidity in a zebrafish systemic infection model. Polymicrobial infection underscored the virulence of F. nucleatum ssp polymorphum in particular with increased endothelial cell death and reduced PECAM-1 abundance in co-infection studies with this organism. When injected systemically into zebrafish in polymicrobial infection, fluorescently labeled bacteria were distributed throughout the vasculature and cardiac region where, in some instances, they co-localized with each other. CONCLUSIONS: These data provide further evidence on the effects of F. nucleatum on endothelium adhesion molecule abundance and permeability while also highlighting the importance of performing polymicrobial infection to study the molecular mechanisms associated with periodontal pathogen-induced vascular damage.


Subject(s)
Coinfection , Fusobacterium Infections , Periodontitis , Animals , Dextrans/pharmacology , Endothelium , Fusobacterium nucleatum , Periodontitis/microbiology , Permeability , Platelet Endothelial Cell Adhesion Molecule-1 , Porphyromonas gingivalis , Virulence Factors , Zebrafish
9.
JID Innov ; 1(2): 100011, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34909715

ABSTRACT

There are no physical or visual manifestations that define skin sensitivity or irritation; a subjective diagnosis is made on the basis of the evaluation of clinical presentations, including burning, prickling, erythema, and itching. Adverse skin reaction in response to topically applied products is common and can limit the use of dermatological or cosmetic products. The purpose of this study was to evaluate the use of human skin equivalents based on immortalized skin keratinocytes and evaluate the potential of a 22-gene panel in combination with multivariate analysis to discriminate between chemicals known to act as irritants and those that do not. Test compounds were applied topically to full-thickness human skin equivalent or human ex vivo skin and gene signatures determined for known irritants and nonirritants. Principle component analysis showed the discriminatory potential of the 22-gene panel. Linear discrimination analysis, performed to further refine the gene set for a more high-throughput analysis, identified a putative seven-gene panel (IL-6, PTGS2, ATF3, TRPV3, MAP3K8, HMGB2, and matrix metalloproteinase gene MMP-3) that could distinguish potential irritants from nonirritants. These data offer promise as an in vitro prediction tool, although analysis of a large chemical test set is required to further evaluate the system.

10.
Tissue Eng Part C Methods ; 27(8): 462-471, 2021 08.
Article in English | MEDLINE | ID: mdl-34210153

ABSTRACT

Macrophages play a key role in orchestrating the host immune response toward invading organisms or non-self molecules in the oral mucosa. Three-dimensional (3D) oral mucosal equivalents (OME) containing oral fibroblasts and keratinocytes are used extensively to mimic the human oral mucosa where they have been employed to examine innate immune responses to both bacterial and fungal pathogens as well as to biomaterials. Although the presence of immune cells is critical in generating an immune response, very few studies have incorporated leukocytes into OME, and to date, none have contained primary human macrophages. In this study, we report the generation of an immunocompetent OME to investigate immune responses toward bacterial challenge. Primary human monocyte-derived macrophages (MDM) were as responsive to bacterial lipopolysaccharide (LPS) challenge when cultured within a 3D hydrogel in terms of proinflammatory cytokine (IL-6, CXCL8, and TNF-α) gene expression and protein secretion compared with culture as two-dimensional monolayers. MDM were incorporated into a type 1 collagen hydrogel along with oral fibroblasts and the apical surface seeded with oral keratinocytes to generate an MDM-containing OME. Full-thickness MDM-OME displayed a stratified squamous epithelium and a fibroblast-populated connective tissue containing CD68-positive MDM that could be readily isolated to a single-cell population for further analysis by collagenase treatment followed by flow cytometry. When stimulated with LPS, MDM-OME responded with increased proinflammatory cytokine secretion, most notably for TNF-α that increased 12-fold when compared with OME alone. Moreover, this proinflammatory response was inhibited by pretreatment with dexamethasone, showing that MDM-OME are also amenable to drug treatment. Dual-labeled immunofluorescence confocal microscopy revealed that MDM were the sole source of TNF-α production within MDM-OME. These data show functional activity of MDM-OME and illustrate their usefulness for investigations aimed at monitoring the immune response of the oral mucosa to pathogens, biomaterials, and for tissue toxicity and anti-inflammatory drug delivery studies. Impact statement Three-dimensional in vitro models of the oral mucosa have been used extensively to investigate the host response to pathogens, but, to date, few have contained primary leukocytes. In this report, we describe the successful incorporation of primary human macrophages into oral mucosal equivalents (OME). These macrophage-containing models were histologically similar to the oral mucosa and immunoresponsive to bacterial lipopolysaccharides by upregulation of key proinflammatory markers. These advanced OME will significantly aid research into host-pathogen interaction, biomaterial toxicity, and drug delivery studies where the presence of an immune cell component is critical to better represent host oral tissue.


Subject(s)
Macrophages , Mouth Mucosa , Cells, Cultured , Cytokines , Fibroblasts , Humans
11.
PLoS One ; 16(7): e0254208, 2021.
Article in English | MEDLINE | ID: mdl-34292999

ABSTRACT

Nanoparticles have the potential to increase the efficacy of anticancer drugs whilst reducing off-target side effects. However, there remain uncertainties regarding the cellular uptake kinetics of nanoparticles which could have implications for nanoparticle design and delivery. Polymersomes are nanoparticle candidates for cancer therapy which encapsulate chemotherapy drugs. Here we develop a mathematical model to simulate the uptake of polymersomes via endocytosis, a process by which polymersomes bind to the cell surface before becoming internalised by the cell where they then break down, releasing their contents which could include chemotherapy drugs. We focus on two in vitro configurations relevant to the testing and development of cancer therapies: a well-mixed culture model and a tumour spheroid setup. Our mathematical model of the well-mixed culture model comprises a set of coupled ordinary differential equations for the unbound and bound polymersomes and associated binding dynamics. Using a singular perturbation analysis we identify an optimal number of ligands on the polymersome surface which maximises internalised polymersomes and thus intracellular chemotherapy drug concentration. In our mathematical model of the spheroid, a multiphase system of partial differential equations is developed to describe the spatial and temporal distribution of bound and unbound polymersomes via advection and diffusion, alongside oxygen, tumour growth, cell proliferation and viability. Consistent with experimental observations, the model predicts the evolution of oxygen gradients leading to a necrotic core. We investigate the impact of two different internalisation functions on spheroid growth, a constant and a bond dependent function. It was found that the constant function yields faster uptake and therefore chemotherapy delivery. We also show how various parameters, such as spheroid permeability, lead to travelling wave or steady-state solutions.


Subject(s)
Antineoplastic Agents , Drug Carriers , Endocytosis , Models, Biological , Nanoparticles/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Transport , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Humans , Kinetics , Nanoparticles/chemistry
12.
Eur J Oral Sci ; 129(2): e12761, 2021 04.
Article in English | MEDLINE | ID: mdl-33645844

ABSTRACT

Oral lichen planus (OLP) is an immune-mediated disease of the oral mucosa with idiopathic aetiology. It is frequently treated with topical corticosteroids (applied as gels, mouthwashes, or sprays); however, the mucosal exposure times of topical corticosteroids are short because of removal by the constant flow of saliva and mechanical forces. In this study we used cell monolayers, as well as oral mucosal equivalents (OMEs) containing activated T-cells, to examine corticosteroid potency and delivery of clobetasol-17-propionate from a novel electrospun mucoadhesive patch. The OMEs displayed tight junctions, desmosomes, hemidesmosomes, and an efficient permeability barrier. Following application of corticosteroids to cells cultured as monolayers, the degree of cytotoxicity measured correlated to the level of potency recognized for each corticosteroid; by contrast, OMEs were largely unaffected by corticosteroid treatment. Permeation of clobetasol-17-propionate into and through the OMEs was time- and dose-dependent, regardless of whether this corticosteroid was delivered in liquid form or from a mucoadhesive patch, and both liquid- and patch-delivered clobetasol-17-propionate significantly reduced the secretion of interleukin-2 by activated T-cells. This study confirms that OMEs are more suitable models than cell monolayers for evaluating toxicity and drug delivery. After topical exposure, clobetasol-17-propionate accumulated in OMEs at a higher level than betamethasone-17-valerate and hydrocortisone-17-valerate, and exerted its immunosuppressive actions following application via the patch delivery system, highlighting the efficacy of this mode of drug delivery to treat OLP.


Subject(s)
Lichen Planus, Oral , Mouth Mucosa , Administration, Topical , Adrenal Cortex Hormones/therapeutic use , Clobetasol/therapeutic use , Glucocorticoids/therapeutic use , Humans , Lichen Planus, Oral/drug therapy
13.
Front Oral Health ; 2: 604565, 2021.
Article in English | MEDLINE | ID: mdl-35047989

ABSTRACT

The incidence of human papillomavirus (HPV)-associated cancer is increasing and HPV is now implicated in the aetiology of more than 60% of all oropharyngeal squamous cell carcinomas (OPSCC). In OPSCC, innate immune cells such as neutrophils and macrophages generally correlate with poor prognosis, whilst adaptive immune cells, such as lymphocytes, tend to correlate with improved prognosis. This may, in part, be due to differences in the immune response within the tumour microenvironment leading to the recruitment of specific tumour-associated leukocyte sub-populations. In this study, we aimed to examine if differences exist in the levels of infiltrated leukocyte sub-populations, with particular emphasis on tumour-associated neutrophils (TAN), and to determine the mechanism of chemokine-induced leukocyte recruitment in HPV-positive compared to HPV-negative OPSCC. Immunohistochemical analysis showed that HPV-negative OPSCC contained significantly more neutrophils than HPV-positive tumours, whilst levels of CD68+ macrophages and CD3+ lymphocytes were similar. Using a 3D tissue culture model to represent tumour-stromal interactions, we demonstrated that HPV-negative tumour-stromal co-cultures expressed significantly higher levels of CXCL8, leading to increased neutrophil recruitment compared to their HPV-positive counterparts. HPV-negative OPSCC cells have previously been shown to express higher levels of IL-1 than their HPV-positive counterparts, indicating that this cytokine may be responsible for driving increased chemokine production in the HPV-negative 3D model. Inhibition of IL-1R in the tumour-stromal models using the receptor-specific antagonist, anakinra, dramatically reduced chemokine secretion and significantly impaired neutrophil and monocyte recruitment, suggesting that this tumour-stromal response is mediated by the IL-1/IL-1R axis. Here, we identify a mechanism by which HPV-negative OPSCC may recruit more TAN than HPV-positive OPSCC. Since TAN are associated with poor prognosis in OPSCC, our study identifies potential therapeutic targets aimed at redressing the chemokine imbalance to reduce innate immune cell infiltration with the aim of improving patient outcome.

14.
Front Oral Health ; 2: 722676, 2021.
Article in English | MEDLINE | ID: mdl-35048046

ABSTRACT

Decades ago, the study of cancer biology was mainly focused on the tumor itself, paying little attention to the tumor microenvironment (TME). Currently, it is well recognized that the TME plays a vital role in cancer development and progression, with emerging treatment strategies focusing on different components of the TME, including tumoral cells, blood vessels, fibroblasts, senescent cells, inflammatory cells, inflammatory factors, among others. There is a well-accepted relationship between chronic inflammation and cancer development. Interleukin-1 (IL-1), a potent pro-inflammatory cytokine commonly found at tumor sites, is considered one of the most important inflammatory factors in cancer, and has been related with carcinogenesis, tumor growth and metastasis. Increasing evidence has linked development of head and neck squamous cell carcinoma (HNSCC) with chronic inflammation, and particularly, with IL-1 signaling. This review focuses on the most important members of the IL-1 family, with emphasis on how their aberrant expression can promote HNSCC development and metastasis, highlighting possible clinical applications.

15.
FEBS J ; 288(5): 1479-1495, 2021 03.
Article in English | MEDLINE | ID: mdl-32681704

ABSTRACT

Several studies have shown a clear association between periodontal disease and increased risk of cardiovascular disease. Porphyromonas gingivalis (Pg), a key oral pathogen, and its cell surface-expressed gingipains, induce oedema in a zebrafish larvae infection model although the mechanism of these vascular effects is unknown. Here, we aimed to determine whether Pg-induced vascular damage is mediated by gingipains. In vitro, human endothelial cells from different vascular beds were invaded by wild-type (W83) but not gingipain-deficient (ΔK/R-ab) Pg. W83 infection resulted in increased endothelial permeability as well as decreased cell surface abundance of endothelial adhesion molecules PECAM-1 and VE-cadherin compared to infection with ΔK/R-ab. In agreement, when transgenic zebrafish larvae expressing fluorescently labelled PECAM-1 or VE-cadherin were systemically infected with W83 or ΔK/R-ab, a significant reduction in adhesion molecule fluorescence was observed specifically in endothelium proximal to W83 bacteria through a gingipain-dependent mechanism. Furthermore, this was associated with increased vascular permeability in vivo when assessed by dextran leakage microangiography. These data are the first to show that Pg directly mediates vascular damage in vivo by degrading PECAM-1 and VE-cadherin. Our data provide a molecular mechanism by which Pg might contribute to cardiovascular disease.


Subject(s)
Bacteroidaceae Infections/etiology , Cardiomegaly/etiology , Edema/etiology , Endothelial Cells/drug effects , Gingipain Cysteine Endopeptidases/toxicity , Porphyromonas gingivalis/pathogenicity , Animals , Animals, Genetically Modified , Antigens, CD/genetics , Antigens, CD/metabolism , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/metabolism , Bacteroidaceae Infections/pathology , Cadherins/genetics , Cadherins/metabolism , Capillary Permeability/drug effects , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Edema/genetics , Edema/metabolism , Edema/pathology , Embryo, Nonmammalian , Endothelial Cells/metabolism , Endothelial Cells/pathology , Fluorescein Angiography , Gene Expression/drug effects , Genes, Reporter , Gingipain Cysteine Endopeptidases/biosynthesis , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Larva/drug effects , Larva/microbiology , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Porphyromonas gingivalis/growth & development , Porphyromonas gingivalis/metabolism , Primary Cell Culture , Signal Transduction , Zebrafish
16.
Biomater Investig Dent ; 7(1): 146-157, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33134957

ABSTRACT

OBJECTIVES: To investigate if differences in titanium implant surface topography influence Candida albicans biofilm formation. MATERIALS AND METHODS: Titanium discs were prepared and characterized using a profilometer: Group A (R a 0.15 µm, smooth), Group B (R a 0.64 µm, minimally rough) and Group C (R a 1.3 µm, moderately rough). Contact angle and surface free energy (SFE) were determined for each group. Non-preconditioned titanium discs were incubated with C. albicans for 24 h. In additional experiments, the titanium discs were initially coated with human saliva, bovine serum albumin or phosphate-buffered saline for 2 h before incubation with C. albicans for 24 h. The amount of fungal biofilm formation was quantified using a colorimetric assay. RESULTS: C. albicans biofilm formation was significantly lower (p < 0.05) on the minimally rough titanium surface compared to smooth and moderately rough surfaces. The titanium surface displaying the lowest SFE (Group B) was associated with significantly lower (p < 0.05) C. albicans biofilm formation than the other two groups. Salivary coating resulted in greater adherence of C. albicans with increased surface roughness. CONCLUSIONS: The minimally rough titanium discs displayed lowest SFE compared to smooth and moderately rough surfaces and showed the least C. albicans biofilm formation. This study demonstrated that C. albicans biofilm formation increased in a SFE-dependent manner. These findings suggest that SFE might be a more explanatory factor for C. albicans biofilm formation on titanium surfaces than roughness. The presence of a pellicle coating may negate the impact of SFE on C. albicans biofilm formation on titanium surfaces.

17.
ACS Biomater Sci Eng ; 6(7): 4087-4095, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32685674

ABSTRACT

Oral candidiasis is a very common oral condition among susceptible individuals, with the main causative organism being the fungus Candida albicans. Current drug delivery systems to the oral mucosa are often ineffective because of short drug/tissue contact times as well as increased prevalence of drug-resistant Candida strains. We evaluated the potency of saturated fatty acids as antifungal agents and investigated their delivery by novel electrospun mucoadhesive oral patches using agar disk diffusion and biofilm assays. Octanoic (C8) and nonanoic (C9) acids were the most effective at inhibiting C. albicans growth on disk diffusion assays, both in solution or when released from polycaprolactone (PCL) or polyvinylpyrrolidone/RS100 (PVP/RS100) electrospun patches. In contrast, dodecanoic acid (C12) displayed the most potent antifungal activity against pre-existing C. albicans biofilms in solution or when released by PCL or PVP/RS100 patches. Both free and patch-released saturated fatty acids displayed a significant toxicity to wild-type and azole-resistant strains of C. albicans. These data not only provide evidence that certain saturated fatty acids have the potential to be used as antifungal agents but also demonstrate that this therapy could be delivered directly to Candida-infected sites using electrospun mucoadhesive patches, demonstrating a potential new therapeutic approach to treat oral thrush.


Subject(s)
Candida albicans , Candidiasis, Oral , Antifungal Agents/pharmacology , Biofilms , Candidiasis, Oral/drug therapy , Fatty Acids , Humans
18.
Pharmaceutics ; 12(6)2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32498237

ABSTRACT

Oral disease greatly affects quality of life, as the mouth is required for a wide range of activities including speech, food and liquid consumption. Treatment of oral disease is greatly limited by the dose forms that are currently available, which suffer from short contact times, poor site specificity, and sensitivity to mechanical stimulation. Mucoadhesive devices prepared using electrospinning offer the potential to address these challenges by allowing unidirectional site-specific drug delivery through intimate contact with the mucosa and with high surface areas to facilitate drug release. This review will discuss the range of electrospun mucoadhesive devices that have recently been reported to address oral inflammatory diseases, pain relief, and infections, as well as new treatments that are likely to be enabled by this technology in the future.

19.
Mater Sci Eng C Mater Biol Appl ; 112: 110917, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32409068

ABSTRACT

The delivery of biopharmaceuticals to the oral mucosa offers a range of potential applications including antimicrobial peptides to treat resistant infections, growth factors for tissue regeneration, or as an alternative to injections for systemic delivery. Existing formulations targeting this site are typically non-specific and provide little control over dose. To address this, an electrospun dual-layer mucoadhesive patch was investigated for protein delivery to the oral mucosa. Lysozyme was used as a model antimicrobial protein and incorporated into poly(vinylpyrrolidone)/Eudragit RS100 polymer nanofibers using electrospinning from an ethanol/water mixture. The resulting fibrous membranes released the protein at a clinically desirable rate, reaching 90 ± 13% cumulative release after 2 h. Dual fluorescent fibre labelling and confocal microscopy demonstrated the homogeneity of lysozyme and polymer distribution. High encapsulation efficiency and preservation of enzyme activity were achieved (93.4 ± 7.0% and 96.1 ± 3.3% respectively). The released lysozyme inhibited the growth of the oral bacterium Streptococcus ratti, providing further evidence of retention of biological activity and illustrating a potential application for treating and preventing oral infections. An additional protective poly(caprolactone) backing layer was introduced to promote unidirectional delivery, without loss of enzyme activity, and the resulting dual-layer patches displayed long residence times using an in vitro test, showing that the adhesive properties were maintained. This study demonstrates that the drug delivery system has great potential for the delivery of therapeutic proteins to the oral mucosa.


Subject(s)
Drug Carriers/chemistry , Muramidase/chemistry , Nanofibers/chemistry , Acrylic Resins/chemistry , Animals , Drug Compounding , Hydrophobic and Hydrophilic Interactions , Mouth Mucosa/microbiology , Muramidase/metabolism , Muramidase/pharmacology , Polymers/chemistry , Rheology , Streptococcus/drug effects , Streptococcus/growth & development , Streptococcus/isolation & purification
20.
Eur J Pharm Sci ; 151: 105372, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32450222

ABSTRACT

Current oral squamous cell carcinoma chemotherapies demonstrate off-target toxicity, which could be reduced by local delivery. Curcumin acts via many cellular targets to give anti-cancer properties; however the bioavailability is hindered by its physicochemical characteristics. The incorporation of curcumin into emulgel systems could be a promising approach for its solubilization and delivery. The aim of this work was to develop emulgel systems containing curcumin for the treatment of oral cancer. The emulgels containing curcumin were prepared with poloxamer 407, acrylic acid derivatives, oil phase (sesame oil or isopropyl myristate). The more stable system was evaluated for mechanical and rheological properties, as well as, the in vitro drug release profile, permeation and cytotoxic potential to oral mucosa models. The flow-throw system evidenced that the formulations could keep 5 min over porcine oral mucosa. Emulgel showed pseudoplastic behavior and a gelation temperature of 33 °C, which ensure their higher consistency. In addition, 70% of the incorporated curcumin was released within 24 h in an in vitro drug release study and could permeate porcine oral mucosa. Monolayers cultures and tissue-engineered models showed the selectivity of the drug and systems for tumor cells. The physicochemical properties, subsequent release and permeation of curcumin to selectivity kill cancer cells could be improved by the incorporation into emulgel systems.


Subject(s)
Carcinoma, Squamous Cell , Curcumin , Head and Neck Neoplasms , Mouth Neoplasms , Animals , Carcinoma, Squamous Cell/drug therapy , Drug Delivery Systems , Mouth Mucosa , Mouth Neoplasms/drug therapy , Squamous Cell Carcinoma of Head and Neck , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...